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THE DYNAMIC EXPANSION OF A SPHERICAL CAVITY IN AN
ELASTIC-PERFECTLY-PLASTIC MATERIAL

ABSTRACT

It has been shown that a finite-difference numerical technique can
be used to solve mixed initial-and boundary-value problems involving
high-speed elastic-plastic flow with spherical symmetry. Numerical
solutions for the dynamic expansion of a spherical cavity under a constant
pressure are presented to demonstrate the nature and capability of the
numerical scheme. The solution for an elastic material agrees closely
with the exact solution. The solution for an elastic-perfectly-plastic
material has confirmed Green's prediction concerning the motion of the
elastic-plastic boundary. At large times, the asymptotic solution of
the dynamic problem is different from the quasi-static solution. This
result indicates that the quasi-static approximation may not hold in
dynamic plasticity. A non-linear dependence of the plastic solution

on the boundary condition is also observed in the results.
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The problem of high-speed elastic-plastic flow with spherical
symmetry is of interest for two reascns. First, it has practical
application in underground explosions and in the detonation of high-
explosives in solids; secondly, with little increase in the mathematical
difficulties from the uniaxial flow, the simple geometry of this problem
allows the study of an elastic-plastic flow involving the bi-axial state
of stresses and inertia forces. Perhaps this second characteristic is
equally interesting to both an applied mathematician and an experimentalist
who is concerned with obtaining information of the dynamic yield pro-
perties of a material under bi-axial state of stresses. 1In the past,
many authors have investigated this problem; the reader may refer to a
paper by Hopkinsl*for a general review on the current status of research
in this subject. Most of the published work is concerned with small

deformations. The materials investigated include the idealized elastic-
perfectly-plastic &nd elastic-linear-work-hardening materials. However, up
to present, because of the mathematical difficulties involved in treating
two-phase flows, there existed no analytical solution which describes
satisfactorily all the phases of the impact process. As pointed out in Section
2 below, only at the very beginning of an impact is the location of the
elastic-plastic boundary known and a simple analytic description of the
flow available. However, for the major duration of the impact process,
the description of the flow seems to rely upon a numerical solution.

The purpose of this report is to show that this problem can be solved

for various initial and boundary conditions by using a finite difference
technique. The elastic-plastic solution obtained for the expansion of

a spherical cavity under constant internal pressure has demonstrated

some interesting facts concerning the impact phenomena. It has confirmed
Green'g*eresults regarding the motion of the elastic-plastic boundary

and also has exhibited the inadequacy of the quasi-static approximation

*
Superscript numbers denote references which may be found on page 30.



in dynamic plasticity. Numerical solutions of spherical elastic=-
plastic flow have also been obtained by Davids et al3 and by Friedman
et al.

2. BASIC EQUATIONS

Referring to a spherical coordinate system, r, 6 and ¢, with the
origin at the center of the cavity, only the equation of motion in the r
direction will not vanish identically because of the spherical symmetry

considered here; hence,

r r 0O v
TR (1)

In the equation, r is the Lagrangian position of a particle; p is the
mass density of the material in the underformed state; v the radial
velocity of the particle, and o. and 0q are respectively the normal
stress components in the radial and the circumferential directions.

The stresses are engineering stresses calculated with reference to the
undeformed state. This report considers only small deformations; hence,
differences between the engineering and true values of stress and strain

will be negligible.
The material is considered to be elastic, perfectly plastic with a

constant yield stress 9 in both simple compression and tension. Both

von Mises and Tresca yield conditions reduce to the form

o -0, =40 . (2)

The material will deform plastically when this equation is satisfied

and when
(or_o)(c_c})=o. (3)

Otherwise, when



or when

but (5)
(o, = ag) (o, - 0g,) <0,
the material behaves as an elastic body.

For the elastic regime, the material obeys Hooke's law. Expressing

the radial and circumferential strains, er and e, respectively, in terms

6
of the radial displacement u,

e =3u
r or
) u
Ee=; ’ (6)

Hooke's law in a differential form can be written as

90 30
r &) 3V _
5t~V ag ~EFrTO
(1)
.a._o'—r (l v)_af_g+LE_ —O
VoIt 3t T r ¥

These two equations and the equation of motion, Equation (1), must be

] Y

solved simultaneously to obtain the elastic solution.

For most materials, under moderate pressures, no appreciable plastic
volume change will occur. Hence, the elastic relation between the

mean hydrostatic stress, (or + 206)/3 and the dilatation du/3r + 2u/r

can be used for describing the plastic flow. Using Hooke's law and

%

condition, the relatio
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differential form is
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This equation must be solved simultaneously with the yield condition,

Equation (2), and the equation of motion, Equation (1), to provide

results for the plastic flow.

b

A convenient representation of the solutions of these equations

can be obtained by introducing the following dimensionless varisables,

2}

Q

Q
0%

0 (9)
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H
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where ry is th 2)]1/2
is the dilatational wave speed in am elastic solid. In terms of these

o
2]

adius of the cavity and cq = [(1 - vVY(E/)/(L - v =2V

dimensionless variables, the simultaneous partial differential equations

for the dynamic problem are

%13__1_-_\)_2%‘5+;2(.(R_@)=0
1-v=-2v
E-Evé@_a_v=
3t 3T 3 0 (10)
VB _o1-w8iilyvop
T T X



and

?R _ 1-v S %"i g_= 0
90X 1—v=2v T X
SR 13V _2V _ (11)
(1 - 2v) 91 3 9x 3 x 0

Equation (10) will apply for elastic deformation; i.e., when

IR -@] <1 (12)

or when

but

(R-8) (R-8) <1.
Equation (11) will hold for the plastic flow, when
R-0=+1
and
(R-8) (R-9) =0 . (1k)
The + signs are for the situations when R - ® = + 1 respectively.

In Equations (10) and (11), only one parameter, the Poisson's ratio
v appears in the coefficients. The equations written in this form
provide a clearer picture of the dependence of the solution on various
parameters of material properties. For a stress boundary condition, the
stress distribution around a plastically deformed cavity at any instant
depends only on the Poisson's ratio and the ratio between the applied

pressure to the yield stress of the material.

Equations (10) and (11) are two sets of first order linear hyperbolic
partial differential equations. Their solutions can be obtained by

combining two waves associating with a displacement function as described

11
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v . 6 L . .
by Hunter. However, this method requires a priori a knowiedge of the

position of the boundary of the elastic and plastic regions o

H o

material which can be obtained only in few instances. Green,
has proved that when there is a discontinuity in the magnitude

of the radial strain er across the elastic-plastic boundary, the boundary

. . . 2
will travel with a constant velocity cp = [E/3p (1 - 2v)]l/ , and the
position of the boundary is, therefore, known. However, with the

rapid attentuation of a diverging spherical wave, this discontinuity in
radial strain can be maintained only near the very beginning of an
impact. Therefore, other techniques must be used to obtain the solution

which holds for the major portion of the impact.

3. NUMERICAL SCHEMES

In this report, a finite difference scheme proposed by La}é7 will
be used to obtain a solution of the equations derived above. The
original scheme has been shown suitable for solving initial value problems
of hyperbolic partial differential equations in hydrodynamics. The
scheme is extended here for mixed boundary-and initial-value problems
with regions of solutions governed by different sets of equations.
The results obtained using this scheme are compared with known analytical
solutions for the case of elastic waves. The accuracy of the numerical

results appears to be satisfactory. An appendix to this report describes

the computer program used to obtain the present results.

The finite difference scheme is for any set of partial differential

equations assuming the conservation form; i.e.,

3F . 3G , . _
ax tar THT0 (15)

where F, G and H are functions of the dependent and independent variables.

The numerical scheme replaces 3F/3x by a central difference quotient; i.e.,

Foo+ l,k_Fn - 1,k
20x

(16)

12



where Ax denotes an increment in x; F designates the value of F at

n+l,k
the grid point located at distances (n+l) Ax and kAT from the origin in
the x and t plane. The time derivative 3G/91 is substituted by a forward

difference quotient,

1
- =(G
2(
At

+ G
Gn, k + 1 n+l,k n-l,k) (17)

Finally, the function H is replaced by the average value at two neighbor-
ing grid points at the time kAnr,
Rye + H ) (18)
2 n+l,k “n-1,k’ V109
The scheme is equivalent to adding into the original equation a term
which is due to an artifical viscosity of the magnitude of (Ax)2/2AT.
The stability and convergence of this scheme has been discussed by Lax.
The stability criterion is similar to the Courant-Friedrichs-Lewy

condition, i.e., AT1/Ax<c where c¢ is a quantity which may depend on the

variables in the problem.

The present equations, Equations (10) and (11), are in the conservative
form and, hence, can be solved numerically with this method. As an
example, the finite difference equation for the first equation of (10)

is obtained; i.e.,

1
- - = +
Rn+l154 Rn—l,k 1= Vn,k+l 2 (Vn+l,k Vn-l,k)
2Ax 1—v—2v2 AT
Roe1,x " ®na1 x . Fn-1,% " ®n-1,k _ 0
Xn41,k *n-1,k

After being converted to finite difference equations, the three equations
in (10) and in (11) will provide three algebraic equations sufficient

for solving the values of the dependent variables at 1 = (k +1)AT;

13



namely, R v and @n from the known data at a previous

n,k+1’ 'n,k+l Sk+1

)

n-1,k’ Cne1,k’ -1,k Vner,x 200V

time kAT; namely, R At each

n-1,k’
point, the finite difference equations for elastic deformations, Equation

(10), will be first used to obtain R and ®n If the difference

n,k+1 k41

between them Rn . -0 | is greater than unity, then the calculations

will be revised by using the finite difference equations for plastic

flow which are derived from Equations (11).

The above scheme can be applied very conveniently at points other
than those on the boundary. However, when the central point X is on

the cavity surface, the point x will be outside the body, and

n-1,k
fictitious values must be assigned’for the dependent variables at this
point in order to use the Lax numerical schemes. The present investi-
gation shows that, for this situation, satisfactory results can be
obtained by using a different numerical scheme. In the new scheme, the
Lax method is applied in reverse to those dependent variables whose
values are not specified on the boundary. Accordingly, a central differ-
ence formula is used for the time derivative and a forward difference
formula for the space derivative. As an example, the space and time

derivatives for the dependent variable V are

v -V
oV _ _n,k+l n,k+l

9T 2AT1 (19)
v - L +V )

3V _ '‘n+l,k 2 n,k+1 n,k-1

ax Ax

However, for the derivatives of the dependent variables whose values are
specified on the boundary, R in this case, the Lax scheme is kept. As

a result, a fictitious wvalue R must be assumed, which, together with

n-1,k

@ .
the other two unknowns Vn=k+l and n,k+1’ can be obtained from the three

finite-difference equations derived from Equations (10) or Equation (11)

1L



using Equation (29). One of the unknowns in the calculation at an interior

point, R_

ii

L4 1S now a known quantity which has the specified value
S+l

of R on the boundary at T = (k + 1)Ar.

4. RESULTS FOR ELASTIC CASE - ACCURACY OF
THE NUMERICAL SCHEME

The case of a constant pressure applied suddenly on the surface of
a spherical cavity within an infinite elastic solid is studied to
demonstrate the capability of the numerical scheme. In Figures la and
1b, the principal shear stress in the present numerical results is
compared to those obtained analytically by Hunter8 and numerically by
Chou.9 Chou uses the method of characteristics in obtaining his solution.
Considering the rather large grid size (twenty-five points per cavity
radius) used to obtain the present solution, the agreement between this

solution and the other solutions is satisfactory.

However, near the elastic wave front where a jump in the values of
the shear stress exists, a large discrepancy is observed between this
solution and the exact one. The discrepancy is mainly due to the
artificial viscosity which is associated with the numerical scheme and
tends to smooth the sharp discontinuities of the solution. Since the
artificial viscosity is equal to (1/2) (AX)Q/AT, the effects can be greatly
reduced by increasing the ratio of At/Ax, as indicated by comparing the
results obtained with At/Ax = 1 and 1/2. For this case, Ax/AT =1 is
the maximum value allowed by the stability criterion; at this Ax/At
ratio some small oscillations in the solution which are not shown in
the figures have already occurred near the wave front. The effects of
the viscosity can also be reduced by diminishing the grid size as seen
in the results for Ax = 0.0l and 0.02. However, considering the increase
of computing time, the second method of reducing viscosity is not as
efficient as the first one. Robertslo‘has proposed a much more effective
method for improving the accuracy of this numerical scheme. The

technique involves combining several solutions of first order accuracy

obtained with a fixed Ax/At ratio. Solutions with accuracy of order

greater than one can be obtained very easily. IPRCTERTY NP 17,8, ARMI
STIVEDY BRriicy
15 TRL, AP, LD, 21005
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Dimensionless Maximum Shear Stress,

20

Figure 1la.

Comparison of numerical and exact solutions for the elastic expansion
of a spherical cavity; the distributions of maximum shear stress along
the radial axis for various times after the sudden application of a
constant pressure, Ry = 1, on the cavity surface.

Exact analytical solution, Hunter (81
Quasi—-static stress distribution —_———
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Figure 1b. Comparison of numerical and exact solutions for the elastic expansion
of a spherical cavity; the variation of maximum shear stress at the
cavity surface after the sudden application a constant pressure,

Ro = 1, on the surface. :
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5. RESULTS FOR ELASTIC-PERFECTLY-PLASTIC MATERIAL

The numerical scheme Jjust discussed has also been used to obtain
the elastic-perfectly-plastic solution for a spherical cavity expanded
under a constant internal pressure which is suddenly applied at t = O.
Typical sets of results are shown in Figures 2a through 3b for the
cases in which the magnitudes of the internal pressures are 2 and 20
times of the constant yield stress of the material. In the results for
the latter case, the evidence of two discontinuities can be seen in
the profiles of stresses along the radial axis. The one which is farther
away from the cavity surface is the elastic wave front while the one
propagating behind is the plastic wave front which separates the regions
of plastic and elastic deformation. The constant speed of propagation
he elastic wave front agrees closely with the exact value of the

dilatation wave speed, s obtained here. The magnitude of the jump in
the dependent variables across the elastic wave front also seems to
agree with the exact solution which is represented by the dashed curves

in Figures 2a to 2c.
The elastic-plastic boundary moves at a constant speed when a dis-
continuity in the radial stress across the boundary is visible near the

beginning of the impact. The value of the speed agrees with the

. . 1 1/2
theoretical one predicted by Green, namely, cp = [E/3p(1 - 2v)] .
This result is shown in Figure L4 in which the position of the elastic-

plastic boundary at all times is plotted. Figure L also indicates that,
for the present boundary condition, the movement of the elastic-plastic
boundary will slow down as the discontinuity across the boundary
disappears because of the geometrical dispersion. As long as the pressure
on the cavity surface remains unchanged, the motion of the elastic-
plastic boundary will come to a halt and then reverse its direction
towards the cavity surface. This result is quite different from that
observed in the static solution for the same elastic-plastic problem;

when the constant pressure is applied quasi-statically at the boundary,

a plastic zone next to the cavity surface is always maintained by the

18
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Figure 2a. Numerical results for the elastic-plastic expansion of a spherical
cavity; the distributions of radial stress along the radial axis for
various times after the sudden application of a constant pressure,
Ro = 2, on the cavity surface. Arrows indicate the positions of the
elastic-plastic boundary.

Numerical solutions using grids {'A‘r:o.oz:
of various sizes (AX/AT:=11) AT=20.01l ————
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Numerical solutions using grids AT =0.02
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or vare / (Shown for T =2.58 6.0 only)
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Numerical results for the elastic-plastic expansion of a spherical
cavity; the distributions of circumferential stress along the radial
axis for various times after the sudden application of a constant
pressure, Rg = 2, on the cavity surface. Arrows indicate the
positions of the elastic-plastic boundary.
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Numerical results for the elastic-plastic expansion of a spherical

Figure 2c.
cavity; the distributions of particle velocity along the radial axis
for various times after the sudden application of a constant pressure,
Ro = 2, on the cavity surface. Arrows indicate the positions of the
elastic-plastic boundary.
Numerical solutions using grids AT=0.02
of various sizes (AX/AT =) AT=0.01 ——~——
(Shown for T=2.58 6.0 only)
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Figure 2d. Numerical results for the elastic-plastic expansion of a spherical
cavity; the distributions of radial displacement along the radial axis
for various times after the sudden application of a constant pressure,
Ro = 2, on the cavity surface. Arrows indicate the positions of the
elastic-plastic boundary.
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Figure 3a. Numerical results for the elastic-plastic expansion of a spherical

cavity; the distributions of radial stress along the radial axis for
several times after the sudden application of a constant pressure,

Ro = 20, on the cavity surface. AArrows indicate the positions of the
elastic-plastic boundary.
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Figure 3b. Numerical results for the elastic-plastic expansion of a spherical
cavity; the distributions of circumferential stress aleng the radial
axis for several times after the sudden application of a constant
pressure, Ro = 20, on the cavity surface. Arrows indicate the
positions of the elastic-plastic boundary.
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applied pressure.5 Differences between the static solutions and the
asymptotic dynamic sclution at large times can also be observed in the
distributions of the stresses and displacements along the radial axis
(Figures 2a to 2d). A larger deformation and a higher radial stress
occur in the dynamic case than do in the static case. These

differences are not likely to be attributable to errors in the numerical

solution, because the cemparison of the results obtained with two

grid sizes does not suggest the possible existence of such large differences

in the solution (Figure 2a). The maximum radius of the elastic-plastic
boundary is alsoc larger in the dynamic case than in the static case.
These disagreements between the dynamic solution at a large time and
the static solution are probably due to the residual stresses produced

by the inertial force occurring in the dynamic deformation process.

This result implies that, in some circumstances, the quasi-static approxi-

mation may not be valid in dynamic plasticity. The quasi-static
approximation in which the static solution of a problem is used to
describe the long-time behavior of the dynamic solution holds in many

situations in dynamic elasticity.g"u’l2

Figures 4 and 5 show, for all times, the dependence of the particle
velocity and of the position of the elastic-plastic boundary on the

1

magnitude of the applied pressure. Although all of the results for
various applied pressure seem to be similar qualitatively, the magnitudes
of various parameters in the solution seems to be quite sensitive to a
change in the pressure. The dependence is rat
also interesting to note that the nonlinearity also appears in the
result of the total duration of the dynamic deformation, namely, the
duration during which the acceleration of the material is not vanishingly
small. This duration for the elastic-plastic problem increases with
increasing applied pressure, while, in the elastic case, the duration

is a constant as shown in Figure 5. Accordingly, the initiation of
slight plastic deformations tend to change considerably the nature of

the flow.

26
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6. CONCLUSIONS

It has been shown that the governing equations for an elastic-
perfectly-plastic flow with spherical symmetry can be solved through
the use of a finite difference technique whose nature is rather well
understood in comparison to other similar methods. With a slight

medification of the original scheme proposed by Lax, the method can be

[on

applied to solve a wide variety of mixed initial-and boundary-value
problems involving elastic and plastic flows. The comparison of the
results for the dynamic deformation of an elastic cavity obtained using
this method and an exact analytical method shows that the accuracy of
the numerical solution is acceptable, except probably in the region
where a discontinuity in the dependent variables appears. Large errors
may occur in this region because of the artificial viscosity added

into the equations by using the numerical scheme. Accordingly, for
solutions containing discontinuities, an investigation of the error

is necessary by varying the grid size and Ax/At ratio. If high accuracy
is required for the solution near the discontinuities, it is advisable
to locate and obtain the discontinuities in the solution using an

analytical method as shown by Friedman et al.

For the dynamic expansion of a spherical cavity in an elastic-
perfectly-plastic solid, the numerical results for a suddenly applied
internal pressure confirm Green's analytical prediction that an elastic-
plastic boundary propagates with a constant speed, c_ = [E/3p(l'— 2v)]l/2,
when discontinuities in stress and particle Velocityroccur across the
boundary. Within the major duration of an impact the elastic-plastic
boundary moves with a variable speed, of which the magnitude cannot be
predicted analytically. Therefore, a numerical technique seems to

be unavoidable in the investigation of spherical elastic-plastic flow.
The same results have also shown that the quasi-static approximation
which is often used in dynamic elasticity may not necessarily hold in

dynamic plasticity. The solution for the dynamic problem investigated

n
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does not approach the static solution as a limit when time elapses.
This result is probably due to the residual stress produced by the

inertia force of the impact.

As far as magnitudes are concerned, the results show a rather
nonlinear dependence of the elastic-plastic solution of the internal
pressure. This nonlinearity seems to indicate that the nature of the

flow would be changed considerably by the initiation of a slight
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APPENDIX

A COMPUTER PROGRAM FOR THE DYNAMIC EXPANSION OF

A SPHERICAL CAVITY BY AN INTERNAL PRESSURE
(ELASTIC-PERFECTLY-PLASTIC SOLUTION)

The computer program used for obtaining the present results is
attached at the end of this Appendix. The program was written in the
FORAST language by Mr. T. Addison of the Computing Laboratory. (The
reader may consult one of the references at the end of the Appendix for
a description of the computer language.) The program can be executed
with the BRLESC Computer which is currently being used in the Ballistic

Research Laboratories.

The computer program is based on the finite difference schemes
described in the main text of this report and will be able to provide
information of stress, displacement, and velocity around a spherical
cavity which is being expanded by an internal pressure specified with
card numbers 157 and 171. The pressure at the boundary is shown as a
constant, RR, but can be changed to a function of time, f(t); 1 is
represented by T in the program. The physical quantities R, ®, V, and U
are represented by R, Q, V and U, respectively.

The program can be used for problems with ing initial

values, if the section between cards 13 and 39 is properly modified.
This section is now written to represent the similarity solution near

T = 0 for this problem. The similarity solution was put in the program
as an alternate way of calculating the results but was omitted in

obtaining the final results presented in this report.

Py RPN R R I marmanaadae Tn SrnAvamoarntae AP 4+ A 27 o
11e IIUILI.UI'.L(.&.L Cailculatlioln procecus 1 Lncreaueinvs Ol vime, al, wWilllc

boundary, x = 1 and shifts in the positive x direction. Calculations

at oints other than the boundarv
at ol1nts other tna tne bounaar C

n n cards 60 to 79: in
r Laaus VY (O I PN 8 41
cards 60 to 65, the plastic equations are used, and in cards 72 to 79,
the elastic equations are applied. Computations at the boundary point

occur only once every other time step, as shown in cards 155 to 170 for

an elastic case and in cards 171 to 182 for a plastic case.
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The input data concerning material properties, specifications for
outputs and the dimensions of the grid used for calculations are punched
in the two cards at the end of the program which will be read by the
machine upon the order written in cards 9 and 11. The input data include

the following information:

Program Notations vs Physical Quanitites

DX: Ax

DT: At

DTT: t of the first output

DTI: interval of t for output

TMAX: t of terminating calcu-
lation

RR: Radial stress at the
boundary, x = 1

NU v

RTO: initial value of radial
stress

A: o

TO: initial time.

The output of the calculation will be stored in a magnetic tape and
can be tabulated in a numerical form (cards 112 to 126) as well as plotted
in a graphical form (cards 134 to 147). The format of printing is
indicated in cards 16 and 17. In plotting, the distributions of stresses,
particle velocity and displacement along the radial axis will be presented
by color curves in a single graph for each time, t. The size and scaling of
the graph is controlled with cards No. 128 and 129. The curves of R,
®, V and U are all referred to the same scale which is chosen for R, and
hence, it is sometimes necessary to adjust the values of V and U with

proper numerical factors before plotting, as shown in cards 132 and 1k49.
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